Ivelisse Resto-Garay

 

Hi, my name is Ivelisse Resto. I grew up in Las Piedras, Puerto Rico and went to college at University of Puerto Rico, in Humacao, Puerto Rico and graduated with a Bachelor of Science in Microbiology.

I’ve always have a desire for knowledge and understanding of the unfamiliar aspects of the world that surrounds me. As I grew up, and with the support of my teachers, I began to participate in science and math competitions, which further increased my curiosity and triggered my interest in science.

As an undergraduate student, I had the opportunity to conduct research in prokaryotic biology for the first time during a summer research program at the University of Georgia, in Athens. During that time I was able to use critical thinking to contribute to the understanding of host-pathogen interactions. This very enriching experience, in addition to faculty encouragement, was fundamental in my decision to pursue graduate studies in biomedical research.

The general areas of research that I’m most interested in are immunology and virology .

My long-term career goals are to earn a PhD degree related to one or both of those areas, and then proceed to post-doctoral studies. Once these goals are reached, the next step in my career is to conduct research at academia level as well as to teach and advise the future generations to prepare them to succeed in their chosen career path.

Joining a PREP program would be the first step on my way to reach my career goals. A PREP program would help me gain more research experience in a laboratory, improve my research skills, and at the same time it would give me a glimpse of the life of a graduate student.

By participating at UGA’s REU summer program I was able to see and experiment firsthand the excellent and diverse training in pathogen biology and host/pathogen interactions UGA can provide. Together, faculty members, student mentors, and PREP@UGA coordinators provide a supportive environment and the necessary tools to help you go in the right direction to fulfill your established goal.

The type of preparation received from PREP @ UGA will make me a competitive candidate for graduate school and it will help me further explore my areas of interest.

My research mentor is David Rose, and my faculty mentor is Dr. Kimberly Klonowski.

Seasonal influenza is an acute viral infection that can affect anybody in any age group, however, infants and the elderly are most susceptible to infection. Annual epidemics of influenza worldwide result in about 3 to 5 million cases of severe illness, and about 250,000 to 500,000 deaths in these high risk populations. Variants of influenza virus that circulate every year are the result of changes in the surface proteins hemagglutinin (HA or H) and neuraminidase (NA or N). These proteins are important for the attachment, and eventual release, of the virus from host cells. Cells of the adaptive immune system, including B and T cells, are required for viral clearance. However, early viral control is mediated by innate immune cells like macrophages, natural killer cells (NK cells), and dendritic cells. NK cells are granular cytotoxic lymphocytes that are activated through cytokines and cell surface receptors, most which are not virus-specific. However, NK cells in mice and humans both express an activating receptor specific for influenza HA called NKp46. The overall goal of our research is to determine whether differences in HA expression and strain specificity regulates NK cell activation and downstream immunity or pathology. Our hypothesis is that NKp46 is key determinant regulating NK cell function after influenza infection.

To test our hypothesis, we will produce a recombinant NKp46 by means of molecular techniques such as bacterial transformation, transfection, and protein isolation. Once we determine we have correctly expressed our protein, we will then use the recombinant NKp46 to probe the interaction between NK cells and a library of HA  proteins from different influenza strains, like H3, H5 and H7. Specifically, we will determine whether the addition of our recombinant NKp46 protein to these co-cultures blocks NK cell activation and killing. This is measured by NK cell expression of CD69 and CD107a by flow cytometry and killing of the HA expressing cells in cytotoxicity assays.

My name is Ivelisse Resto and I am a PREP@UGA scholar.