Nicole S. Williams

 

Hi, my name is Nicole Williams. I received my Bachelor’s degree in Biological Sciences from Atlanta Metropolitan State College in Atlanta, GA.

My earliest memory of wanting to go into science was in my 9th grade biology class. I always thought that I was going to follow in the footsteps of my mom and go into criminal justice like her, but I became very interested in this subject called biology; the study of life and organisms. Even though in 9th grade it was on a broad scope and we covered many topics, I was most fascinated when we discussed cells. I was in awe that these little things did so much. And from there I started asking questions because I always wanted to know more.

I decided on a career in research when I was at my undergraduate institution. There was a program in place for science majors called the Mathematics, Engineering and Science Achievement program or MESA. Through this program we attended seminars where we heard about various careers in science to determine what track we wanted to take such as Pre-Med, Pre-Nursing or Research. It was then that I was able to realize the track I eventually wanted to follow was biomedical research. I believe that research is perfect for me as I am naturally curious. I love the process of formulating a question or hypothesis and following the necessary scientific steps to finding an answer.

My general area of interest is in infectious diseases. I became fascinated with this while I was in my Microbiology class and further fueled my interest when I enrolled in Virology and audited a Medical Microbiology class. I am most interested in understanding exactly how these infectious pathogens interact with its host in order to find appropriate vaccine targets. Ultimately, I want to be involved in research that explores anti-viral and vaccine design and development.

My long term career goal is to secure a position as a principal investigator, leading my own lab in a government agency.

I decided to join PREP@UGA because it not only provides me the opportunity to be a more competitive applicant for a graduate program but it also allows me to participate in cutting edge research that has great societal impact.

The PREP program has been the best choice for me because I am given the opportunity to practice more for the GRE with a tutor they have provided while in a research lab acquiring new skills and techniques that I can take with me to graduate school. We as PREP scholars are also given a sneak peak at what it’s like to be a graduate student by taking a few graduate level courses both formally and informally. I am also fortunate to have our program director and coordinator who both genuinely care about our success in the program.

By the time I’ve completed the PREP program, I hope to be more confident in my research techniques and able to think more critically as expected on the graduate level.

Currently I am working under the direction of my faculty mentor Dr. Ted Ross and research mentor Don Carter an Assistant research scientist in his lab. One of the current projects in Dr. Ross’ lab explores vaccine design and development for seasonal and pandemic influenza.

The direction of my project is to identify the influence of prior exposure to future infection or vaccination. We want to gain a better understanding of pre immunity on subsequent vaccination to seasonal strains of influenza. Antigenic drift occurs when there are point mutations in a viral gene that lead to antigenic changes and vaccine escape. This results in the different influenza vaccines year to year. The hypothesis of my project is that significant changes in certain amino acid residues can have a direct correlation between cross reactivity in certain influenza strains. Meaning, prior exposure to one strain can potentially provide protection or an immune response to future exposure of another.

So far, I have used bioinformatics tools to identify amino acid residues of importance that are similar or divergent in influenza strains. I have also completed transformations which allow me to amplify my plasmid DNA containing viral genes expressing mutated amino acid residues. These will be further used to create virus like particles or VLPs. Using VLPs in the lab allows us to work with particular influenza strains safely without the potential to cause infection because they do not contain any viral genetic material and are non-infectious.

Further along in my project, I will also use the technique of reverse genetics to express these mutations in amino acids sequences in the live virus. These will be used to further test the validity of their importance.

My name is Nicole Williams and I am a PREP@UGA Scholar.